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Modeling and Simulation of  a Silicon Beam Resonator Attached to 
a Square Diaphragm 

Shangchun Fan,* Guangyu Liu,** Man Hyung Lee*** and Kang Sup Yoon**** 
(Received September I1, 1996) 

Based on the Finite Element Method (FEM) model of a practical silicon beam resonator 

attached to a square diaphragm used for measuring pressure, this paper presents two location 

error models which exist in actual fabrication. We calculate, analyze and investigate the 

relationship between the basic natural frequency of the beam resonator and the measured 

pressure for two error models by making use of FEM. In order to improve the exchangeability 

of the sensor, it is necessary to monitor the processing accuracy in x -and  y-axes, and the 

reference angle relative to the ideal location within the positive stress range. It is also necessary 

to monitor the processing accuracy in the x-axis within the negative stress range, as the beam 

axial direction is along the x-asis the square diaphragm. 
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N o m e n c l a t u r e  

A , H  : Half length and thickness of the 

square diaphragm 

X , Y  : Cartesian coordinate of the 

square diaphragm 

p : Pressure 

A o , A o + L  : Axial coordinates of the beam in 

Cartesian coordinate of the 

square diaphragm 

L,b ,h  :Length,  width and thickness of 

the beam which is attached to the 

square diaphragm 

-a ,a  : The local coordinates of the 

beam in Cartesian coordinate of 

the beam 
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B , D  : x - a x i s  and y-axis deviations of 

the beam relative to its ideal loca- 

tion 

a[deg.] : T h e  angular deviation of the 

beam relative to its ideal location 

W ( x , y )  : Displacement of the square dia- 

phragm under the applied pres- 

sure p 

Ds : The flexural rigidity of the square 

diaphragm 

E,p,  ll : Young modulus, density and 

poisson ratio of the sensing struc- 

ture 

Wmax : Ratio between the maximum nor- 

mal displacement and the thick- 

ness of the square diaphragm. 

•x(X,y),•y(X,y) :Stresses of the square dia- 

phragm 

u(s,z,t),w(s,t) : Axial and normal vibrating 

displacements of the beam in 

Cartesian coordinate of the beam 

t �9 Time 

s , z  : Axial and normal coordinates of 

the beam in Cartesian coordinate 

of the beam 

c~s~ : Initial axial stress of the beam 

S : Integrated length of the beam 
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co[rad/s],w(s) : Natural frequency and its corre- 

sponding vibrating shape along 

the axial direction of the beam 

U : Potential energy of the beam 

T : Kinetic energy of the beam 

U0 : In i t ia l  potential energy of the 

beam, which is caused by o-~ 

Ur :To ta l  potential energy of the 

beam 

Sj, Sj+I The jth and the ( j + l ) t h  node of 

the beam element 

N :To ta l  number of the beam ele- 

ment 

q : D i m e n t i o n l e s s  v a r i a b l e  in 

domain s ~  [S~,Sj+I] 
! : Half length of the beam element 

in domain s r  [Sj,Sj+I] 
ug(s),wj(q) :Displacement of the beam ele- 

ment in domain s ~  [ Ss, Sj+al 
Q2 ~ : The second order Hermite inter- 

polation vector [1 q qZ qs q4 

G2 : The second order Hermite inter- 

polation matrix 

as : Element nodal  displacement  

vector [ w ( - - 1 )  w ( - - 1 ) '  w" 

( 1) w ( + l )  w ' ( + l )  w" 
( + 1 ) ]  r 

U s : Potential energy of the beam ele- 

ment in domain s ~  [Ss,Ss+l] 
T s : Kinetic energy of the beam ele- 

ment in domain s ~  [Ss,SS+l] 

U0 j : In i t ia l  potential energy of the 

beam element in domain s ~  [Ss, 

S~+1] 
U J  :Tota l  potential energy of the 

beam element in domain s C  [Ss, 

K s : The beam element stiffness matrix 

M s : The beam element mass matrix 

K j  " The beam element initial stiffness 

matrix 

K j  " The beam element total stiffness 

matrix 

K : The assembly stiffness matrix 

M : The assembly mass matrix 

a : The assembly nodal displacement 

vector 

f (P ,B ,D,c6  [He] : Basic natural frequency of 

the beam for pressure p ,  with 

x-axis deviation B, y-axis devia- 

tion D and the angular deviation 

c~ relative to its ideal location 

zlf(/3,D,cD [He] : Variation of the basic nat- 

ural frequency of the beam within 

(0, p ) ,  with x-axis  deviat ion 

/3, y-axis deviation D and the 

angular deviation a relative to its 

ideal location 

t~(/3,D,ct) :Relative variation of the basic 

natural frequency variation of the 

beam within (0, p ) ,  with x-axis 

deviation /3, y axis deviation D 

and the angular deviation ct rela- 

tive to its ideal location 

Superscripts 
j : Number of the element 

T : Transpose of matrix 

Subscripts 
j : Number of the element 

T : Total 

F E M  : Finite element method result 

I. Introduction 

Resench and development on silicon resonant 

sensors has grown rapidly in recent years (Beeby, 

et al. 1995; Luo, 1996; Parsons, et al., 1992; 

Tilmans, et al. 1994). Silicon resonant sensors 

have advantages such as direct digital output 

(without A/D) ,  long term stability, low hyster- 

esis and high repeatability canparerd to general- 

ized resonant sensors (Hauptmann, 1991). The 

advantages of silicon sensors include excellent 

mechanical properties, high strength, freedom 

from mechanical hysteresis, ability to batch proc- 

ess and therefore make low cost, and the compat- 

ibility of mechanical and electrical properties. In 

addition, the temperature feature of silicon reso- 

nant sensors is much better than that of piezoresis- 

rive sensors. It is also much easier to interface 

with a microprocessor in order to develop smart 
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+A Y 

vacuum cavity 

P 
Fig. I Sensing structure of the sensor. 

or intelligent sensors or sensor systems, due to its 

unique operating principle based on the relation- 

ship between the natural frequency and measured 

parameters such as pressure, force etc. 

Figure',. 1 shows the structure of a silicon reso- 

nant sensor for measuring pressure. The prelimi- 

nary sensing unit is a square diaphragm. The 

measured pressure acts perpendicularly to the 

lower surface of the diaphragm and yields the 

stress. T]he final sensing unit is a beam, which is 

attached 1o the upper surface of the diaphragm. 

Moreover, the thickness of the beam h should be 

much less than the thickness of the diaphragm H,  

and the width of the beam should be less than the 

half length of the diaphragm A. Based on the 

above structural feature, an appropriate initial 

stress is applied along the axial direction of the 

beam, which is almost identical with the stress of 

the square diaphragm at the same position. Thus 

the natural frequency of the beam is varied with 

the applied pressure which acts on the square 

diaphragm. Therefore, the pressure will be mea- 

sured via the change in natural frequency of the 

beam. In addition, the beam resonator has a very 

high Q factor because it can be packaged within 

a vacuum housing. 

Figure 2 shows the ideal location scheme of the 

beam. Two error cases exist during the actual 

positive stress range 

Fig. 2 

+A 

X -a +a s 

earn 

, Y 

o X 

negative stress range 

Ideal locations of the beam at the diaphragm. 

+A 

beam 

- A  

Fig. 3 

B 

x 

+A 

Error model 1 of beam's location at the 

diaphragm. 

fabrication. Figure 3 shows the location error 

model 1 within the positive stress range, while 

Figure 4 shows the location error model 2 within 

the negative stress range. It is certain that the 

frequency-pressure relationship varies with the 

deviation B in the x-axis,  deviation D in the 

y-axis and the angular deviation a relative to its 
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& 

Fig. 4 

+A 

I 

Error model 2 of beam's location at the 

diaphragm, 

-A 

ideal location for the above error cases. In order 

to improve the exchangeability of the sensor, it is 

necessary to investigate the influence laws of the 

above deviations on the frequency-pressure rela- 

tionship of the beam resonator. 

It is a typical mechanical problem for the 

vibration of a beam under a constant axial load. 

However, the silicon beam resonator, which is 

shown in Fig. l, has never been discussed in the 

literature as far as we know until recenthy. The 

objective of this paper is to study the above 

problems in order to obtain some directions 

during developing and fabricating the silicon 

resonator sensors by making use of a finite ele- 

ment model (FEM). 

2. Finite Element Modeling 

2.1 Stresses on the upper surface of the 
square diaphragm 

According to the structural feature and the 

design demands for the sensor, the square dia- 

phragm is within the range of a small deflection. 

Then the differential equation can be written as 

follows (Timoshenko et al. 1959): 

84 W (x,y) P 84W(x ,  y)  + 2 8 4 W ( x , y )  ~ 
8x 4 3x28y 2 8y 4 Ds 

(1) 
E H  3 

where, Ds = 12 ( 1 --/z 2) 

According to the buil t - in edge of the square 

diaphragm, its displacement can be assumed as 

follows : 

2 2 2 2 2 

W(x ,y ) :WmaxH(~2- - l ) (~ f - , )  , 2 )  

Substituting Eq. (2) into Eq. (1), the displace- 

Z 

o / I 
- a  +a 

middle plane 

Fig. 5 Mathematical model of the beam. 

ment W ( x , y )  can be obtained. Then stresses on 

the upper surface of the square diaphragm can be 

obtained (Timoshenko et al. 1959) : 

A 2 3X2 y 2  z 

o.x (x,y)  -- 96 

X 2 / ~ ( ~ _ \  \2/3,  2 
+ 

O'y(X,y) 49p { A ~2[{ 3y2 yZ - l )  2 

2 "~2{ 3X 2 

2.2 Energy expressions of the beam 
Figure 5 shows the mathematical model of the 

beam. The vibrating displacements of the beam at 

an arbitrary point are as follows: 

. = -  cos cot (4) 

w (s,t)  = w  (s)cos cot 

Energy expressions of the beam resonator are 

as follows ( Rao, S. S., 1990): 

The potential energy 

Ebh 3 cos 2 cot s  d2w (s) ] 2  
u -  :4 j [ - - y y - j  as (5) 

S 

The kinetic energy 

_ obhco 2 sin 2 cot f 
T 2 - jEw(s )]2ds  (6) 

s 

In addition, the initial potential energy of the 

beam, which is caused by o.~~ is 

U o - b h c ~ 1 7 6  -Jo.s (s) [ ~ ] 2 d s  
S 

(7) 

From Eq. (3) and Fig. 1, we have the follow- 

ing relation for the ideal case : 

o. f l (s) :o .x(x ,O)--  49P { A ~213x2 ' \  
96 \ H ]  k ~ - l )  

/ X2 \z3 
(8) 
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On the other hand, from Eq. Fig. 3 and Fig. 4, 
we have the following relation for the error cases 
( Timoshenko, et al. 1959): 

aft(s) = s i n  2 ~ (s) a~ (x,y) + c o s  2/~ (s) o'y (x,y) 
(9) 

sin fl(S) = (Ao+O.5L+B+s cos a ) 2 /  

[Ao+O.5L+B+s cos a )2+  (D+s  sin a) 2] 

cos 2/3(s) = (D+s  sin a)2/ 
(Ao+O.5L+B+s  cos a )2+  (D+s  sin a) 2] 

Then the total potential energy of the beam is 

u~= U -  Uo (10) 

2.3 Fini te  e l ement  equat ion of  the b e a m  

In Eq. (7), if as~ is a constant aft, the 
analytic relationship between the basic natural 
frequency and the initial axial stress can be direct- 
ly obtained (Tilmans, et al. 1994): 

4.732h E o.s asOL2 o.5 

(11) 

However, from Eqs. (3), (8) and (9), d~~ is 
varying. Therefore, we present a finite element 
equation to solve the above problem. 

Based on the above equations, we can divide 
the element along the axial direction of the beam, 
see Figure 6. Introducing the dimesionless length 
q =  (S--  S s ) / l ,  l = 0 . 5 ( S . ~ + l - S . i ) ,  the map of the 
domain s~[S~, S~+l] is q ~ [ - - l + l ) .  For a 
displacement of the jth element, we introduce the 
second-order Hermite interpolation. 

wj (s) = wj (q) = QfG2a.i (12) 
Q2~ [1 q q~ q~ q, qS] 
a s = [ w ( - - l )  w ' ( - - 1 )  w " ( - - l )  w ( + 2 )  

w ' ( +  1) ru" (+  1) ] r 

2l 

-1 ~ +1 

1 j a+l N+I 

Fig. 6 Dividing element along beam's axial 
direction. 

8 5l 12 8 - 5 1  l 2 
- 1 5  - 7 1  - l  z 15 - 7 I  12] 

G 1 0 - 6 1  - 2 l  2 0 6l - 2 I  2 

2= 1-6- / I~ 101l 21212 --100101__ 1 212112[ 

J L --3 --3l --I  z 3 --31 l 2 

From Eqs. ( 5 ) -  (10), (12), we can obtain the 
element potential energy, kinetic energy, and ini- 
tial potential energy in the domain s~[Ss ,  
Ss+l]. Then we can obtain the element stiffness 
matrix: 

Kj__ Ebh ~ /'+1G T ~ 2 T I ~ 2 I ~  " - ~ J - 1  2 ~2 ,,~2u2aq (13) 
2 . 2 _  d ~ 0  

, ~ 2 - -  d q  2 "t~2 

The element mass matrix: 

MJ= pbhl f ~ IG2r Q2~ Q2~ (14) 

The element initial stiffness matrix: 

bh r+l j__ 0 K,,-~-J_, c~[Sj+ (q+l) l ]  
G2rQ2 ' r Q2'G2d q (I 5) 

Ql_ d ~,o 
2 -- ~c~2 

The elcment total stiffness matrix: 

K~r ==KJ +K0 j (16) 

From Eqs. (16) and (14), the assembly stiff- 
ness matrix K and assembly mass matrix M can 
be obtained in the local domain s ~ [ - a ,  +a]. 
Then the finite element equation of" the beam 
resonator can be written as follows: 

( K - w 2 M ) a = 0  (17) 

where the assembly nodal vector a consists of all 
a j .  

For the actual structural features of" Fig. 1, the 
boundary conditions of  the beam are as follows: 

s - - a "  w ( s ) = w ' ( s ) = O  (18) 
s = + a  w ( s ) = u , ( s )  = 0  

From Eqs. (17), (18), natural frequencies and 
the corresponding vibrating shapes of the beam 
resonator can be obtained. 
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4. Calcu lat ion  and Di scuss ion  of  

Frequency Charac ter i s t i c s  

Firstly, it is necessary to point out that the 

finite element solution of the first mode of Eq. 

(17) converges to the analytic solution of Eq. 

(11) as the element number N is more than 2, 

provided the the initial stress ~~ is a constant 

for the given parameters of the beam resonator. 

On the other hand, the solution of the first mode 

of Eq. (17) converges to a definite value as the 

element number N is more than 2, if the initial 

stress a~ is in the form of Eq. (9). However, in 

this paper the element number N is selected to be 

17 in order to investigate the detailed vibration 

shape of the beam resonator simultaneously. 

The sensor is made of silicon, E = 1.3 • 1011 I)a, 
p = 2 . 3 3 •  lOakg/m a, /~-0.278. The half length 

and thickness of the square diaphragm are A -  I 
)< I0 -a DZ and H=0 .1  •  am, respectively. In 

addition, the width and thickness of the beam are 

b - - 5 0 •  l0 6m and h = 5 •  10 %n. 

Define ,dr(B, D, a) [hzl = f ( P ,  B, D, a) - f  
(0, 0, 0, 0) as the variation of the basic natural 

frequency of the beam within (0, p ) ,  with the 

x-axis deviation /3, y axis deviation D and the 

angular deviation a relative to its ideal location, 

where f [Hz] -- co [ tad~s]/2rc. 
Define f i(B, D, a ) = [ A f ( B ,  D, a,) -A f (O ,  O, 

O)l/zlf(O, 0, 0) as the relative variation of the 

basic natural frequency variation of the beam 

within (0, P), with the x-axis deviation /3, 

y-axis deviation D and the angular deviation a 

relative to its ideal location. 

Table's 1~3 shows /~(/3, D, 0), ( a =  0deg), 

/5)(/3, D, 3) ( a - - + 3 d e g )  and /~(/3, D, - 3 )  (a 
-3deg . ) ,  within (0, 105)pa, as the beam is 

located at different positions, i. e., with different 

,r-axis deviation /3, y-axis deviation D and the 

angular deviation a relative to its ideal location 

on the square diaphragm. The design ideal loca 

tion is ( 300, +300) • 10-6re(or L = 6 0 0 •  10-~m) 

within the positive stress range of the beam, and 

the beam's axial direction is along the x axis of 

the square diaphragm, which corresponds to /3 = 

0, D--0 ,  a--0.  In addition, f(O, 0, 0) 106648 

Table 1 The relative variation /3(/3, D, O) of the 
frequency variation of the beam. 

B( •  10 %n) 

D( • 10-677r 0 2 4 6 

0 0 0.001 0.001 0.001 
2 0.002 0.001 0.001 0.001 
4 0.001 0.001 0.001 0.001 
6 0.001 0.001 0.001 0.001 

Table 2 The relative variation /~(/3, D, 3) of the 
frequency variation of the beam. 

B( •  ~ 

D( :< 10-61/,/) 0 2 4 6 

0 0 0.002 0.001 0.001 
2 0.001 0.001 0.002 0 
4 0.001 0.001 0.001 0.001 
6 0.001 0.001 0.001 0.00 I 

Table 3 The relative variation ~(B, D, - 3 )  of the 
frequency variation of the beam. 

f i(XlO Gin) 

D(X t0-+m) 0 2 4 6 

0 0 0.002 0.001 0,001 
2 0.001 0 0.001 0.001 
4 0.001 0.002 0.002 0.001 
6 0.002 0.001 0,002 0.001 

Hz, ~If (O, 0, 0)=9924Hz.  

From Table's 1--3, the variation of the basic 

natural frequency of the beam, which is influen- 

ced by the deviation D, the deviation B, and the 

angular deviation a of the beam relative to its 

ideal location, are almost the same within the 

positive stress range. Therefore, it is necessary to 

monitor the processing accuracy in x-axis, 

y-axis ,and the reference angle relative to the 

ideal coordinate during actual fabrication, in 

order to improve the exchangeability of the sen- 

sor. 

Table's 4--6 show ~(/3, D, 0) (c~=0), 

(B, D, 3) (a=+3deg . )  and I~(B, D, 3) ( a =  

- 3 d e g . ) ,  within (0, 10~)pa, as the beam is 

located at different positions, i. e., with a different 

x axis deviation /3, y-axis deviation D, and the 
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Table 4 The relative variation /3(B, D, 0) of 
the frequency variation of the beam. 

B ( •  IO%n) 

D ( x  10-%n) 0 - 2  - 4  - 6  

0 0 -0.006 -0.020 -0.027 
2 0 0.007 -0.020 0.027 
4 0.001 -0.007 0 .019  -0.028 
6 0.003 --0.005 --0.017 --0.028 

Table 5 The relative variation f l(B, D, 3) of 
the frequency variation of the beam. 

B( • 10 %n) 

D ( x 10- 6r,/,) 0 - 2  - 4  6 

0 -0.001 -0.009 -0.024 -0.029 
2 -0.002 0 .010  -0.023 -0.029 
4 -0.002 -0.011 -0.021 -0.030 
6 -0.004 -0.012 0 .026  -0.029 

Table 6 The relative variation f l(B, D, - 3 )  of 
the frequency variation of the beam. 

t~'(• I0 6m) 

D (  x 10-6ttl) 0 - -2  - -4  - 6  

0 --0.001 --0.009 --0.024 --0,029 
2 --0.001 --0.011 --0.025 --0.029 
4 --0.003 0.011 --0.022 --0.029 
6 --0.002 --0.010 0 .018  --0.031 

sible in order to improve the exchangeability of 

the sensor. 

Compareing the above tables, it is obvious that 

locating the beam in the middle of the square 

diaphragm is much better than at the edge. 

5. C o n c l u s i o n  

Based on the Finite Element Method model 

and analyses of the initial stresses applied to the 

beam resonator attached to a square diaphragm, 

this paper first calculates, analyzes and investi- 

gates the relationship between the basic natural 

frequency of the beam resonator and the mea- 

sured pressure for two error models. An impor- 

tant result is obtained during the actual fabrica- 

tion in order to improve the exchangeability of 

the sensor. That is: it is necessary to monitor the 

processing accuracy in the x-axis,  y-axis  and 

the reference angle a relative to the ideal coordi- 

nate, within the positive stress range, while only 

in the x-axis within the negative stress range as 

the beam axial direction is along the x-axis of the 

square diaphragm. In addition, locating the beam 

in the middle of the square diaphragm is much 

better than at the edge. 

A c k n o w l e d g m e n t  

angular deviation a relative to its ideal location 

on the square diaphragm. The design ideal loca- 

tion is ( + 7 0 0 +  1000) • 10 6m(or L = 3 0 0 •  10 6 

m) within the negative stress range of the beam, 

and the beam axial direction is along the x-axis 

of the square diaphragm, which corresponds to /3  

=0,  D=O, a = 0 .  In addition, f (O, O, O, 0 ) =  

426564Hz, zJf(O, 0, 0 ) =  10475Hz. 

From "Fable's 4--6, the variation of the basic 

natural fi'equency influenced by the deviation /3 

is much greater than that influenced by the devia- 

tion D and the angular deviation a relative to its 

ideal location, within the negative stress range. 

Therefore, it is necessary to monitor the process- 

ing accuracy along the y-axis during actual fabri- 

cation within the negative range, i. e., the y-axis 

deviation /3 should be reduced as much as pos- 
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